总结:二阶微分方程的解法需根据方程类型(常系数/非常系数、齐次/非齐次)选择合适方法。常系数方程优先用特征方程法,非齐次方程可结合待定系数或常数变易法,非常系数方程则依赖特解发现与刘维尔定理。
二阶微分方程的3种通解公式如下:第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。举例说明求微分方程2y+y-y=0的通解。先求对应...
第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。拓展:二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是...
1、Ay''+By'+Cy=e^mx 特解 y=C(x)e^mx 2、Ay''+By'+Cy=a sinx + bcosx 特解 y=msinx+nsinx 3、Ay''+By'+Cy= mx+n 特解 y=ax 通解 1、两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)2、两根相等的实根:y=(C1+C2x)e^(r1x)3、一对共轭复根:r1=α+iβ,r...
二阶变系数常微分方程的解法主要包括以下几种:1. 直接积分法:这种方法适用于简单的二阶微分方程。通过直接对微分方程进行积分,将二阶方程转换为一阶方程,然后进行积分求解。此法的关键在于能否将原方程成功降阶。2. 常数变易法:此法常用于处理复杂的二阶微分方程。通过假设解的形式,将其代入原方程...